New Gene Involved In Sepsis Found

A large-scale forward genetic screen has identified Gasdermin-D as a key mediator of the lethal septic shock response to bacteria.

AsianScientist (Nov. 9, 2015) – Scientists have identified a gene that could potentially open the door for the development of new treatments of the lethal disease sepsis. Their findings were published in Nature.

Researchers from The Australian National University (ANU) and the Garvan Institute of Medical Research worked with Genentech, a leading United States biotechnology company, to identify a gene that triggers the inflammatory condition that can lead to the full-body infection sepsis.

Sepsis is a severe whole-body infection that kills an estimated one million people in the US alone each year. It occurs as a complication to an existing infection, and if not treated quickly can lead to septic shock and multiple organ failure, with death rates as high as 50 percent.

Researchers were aware that sepsis occurs when molecules known as lipopolysaccharides (LPS) on the surface of some bacteria infiltrate cells, triggering an immune response that causes the cells to self-destruct. But exactly how the self-destruct button was pressed remained a mystery.

Scientists at Genentech have showed that Gasdermin-D usually exists in cells in an inactive form. When the LPS molecules enter the cells they trigger an enzyme called caspase-11, a kind of chemical hatchet, to lop the protective chemical cap off Gasdermin-D, which in turn leads the cells to self-destruct.

The team employed a large-scale forward genetics discovery platform to screen thousands of genes for those involved in the LPS driven self-destruct pathway of cells. They found that the new gene created a protein, Gasdermin-D, that triggers cell death as part of the pathway to sepsis.

Dr. Nobuhiko Kayagaki, senior scientist from Genentech, said the work will help researchers understand and treat other diseases as well as sepsis.

“The identification of Gasdermin-D can give us a better understanding not only of lethal sepsis, but also of multiple other inflammatory diseases,” he said.

“This finding is a key that could potentially unlock our ability to shutdown this killer disease before it gets to a life-threatening stage,” added co-author Professor Chris Goodnow, from ANU and Garvan Institute of Medical Research.

The article can be found at: Kayagaki et al. (2015) Caspase-11 Cleaves Gasdermin D for Non-Canonical Inflammasome Signalling.

———

Source: Australian National University.
Disclaimer: This article does not necessarily reflect the views of AsianScientist or its staff.

Asian Scientist Magazine is an award-winning science and technology magazine that highlights R&D news stories from Asia to a global audience. The magazine is published by Singapore-headquartered Wildtype Media Group.

Related Stories from Asian Scientist