Oops! The Brain Signature Of A Mistake

Using transgenic mice, scientists have captured gamma oscillations in the brain that fire when a mistake is first realized.

AsianScientist (May 5, 2014) – Scientists have captured an elusive brain signal underlying memory transfer and, in doing so, pinpointed the first neural circuit for the precise moment when one becomes consciously aware of a self-made mistake and takes corrective action.

The findings, published in Cell by researchers at the RIKEN-MIT Center for Neural Circuit Genetics, verified a 20 year old hypothesis on how brain areas communicate.

In 2006, the MIT team under the direction of Nobel Laureate Susumu Tonegawa began a study to understand working memory in mice. They trained animals to navigate a T maze and turn left or right at a junction for an associated food reward. They found that working memory required communication between two brain areas, the hippocampus and entorhinal cortex, but how mice knew the correct direction and the neural signal for memory transfer of this event remained unclear.

The study’s lead author Jun Yamamoto noticed that mice sometimes made mistakes, turning in the wrong direction then pausing, and turning around to go in the correct direction, trials he termed “oops” in his lab notebook. Intrigued, he recorded neural activity in the circuit and observed a burst of gamma waves just before the “oops” moment. He also saw gamma waves when mice chose the correct direction, but not when they failed to choose the correct direction or did not correct their mistakes.

The critical experiment was to block gamma oscillations and prevent mice from making correct decisions. To do this, the researchers created a transgenic mouse with a light-activated protein called archaerhodopsin (ArchT) in the hippocampus. Using an optic fiber implanted in the brain, light was flashed into the hippocampal-entorhinal circuit, shutting off gamma activity. In accord, the mice could no longer accurately choose the right direction and the number of “oops” events decreased.

The findings provide strong evidence of a role for gamma oscillations in cognition, and raise the prospect of their involvement in other behaviors requiring retrieval and evaluation of working memory. This may open the door to a class of behaviors called metacognition, or “thinking about thinking”, the self-monitoring of one’s actions.

Regarding the appearance of gamma oscillations in the “oops” cases, Dr. Tonegawa stated, “Our data suggest that animals consciously monitor whether their behavioral choices are correct and use memory recall to improve their outcomes.”

The article can be found at: Yamamoto et al. (2014) Successful Execution of Working Memory Linked to Synchronized High-Frequency Gamma Oscillations.


Source: RIKEN; Photo: HelveticaFanatic/Flickr/CC.

Disclaimer: This article does not necessarily reflect the views of AsianScientist or its staff.

Asian Scientist Magazine is an award-winning science and technology magazine that highlights R&D news stories from Asia to a global audience. The magazine is published by Singapore-headquartered Wildtype Media Group.

Related Stories from Asian Scientist