The Brain Beats To An Electric Clock

Surprisingly, it is voltage rather than calcium ions that is synchronized in the region of the brain that controls the circadian rhythm.

AsianScientist (May 8, 2017) – Researchers from Japan have found that cells in the brain’s master circadian clock synchronize voltage rhythms despite asynchronous calcium rhythms. These findings, published in the Proceedings of the National Academy of Science, might explain how a tissue-wide rhythm is maintained.

A network of thousands of neurons forms a tissue called the suprachiasmatic nucleus (SCN) within the brain. The SCN, functioning as the master circadian clock, is responsible for generating daily rhythms in physiology and behaviour including sleep patterns.

Neurons in the SCN generate oscillatory signals that are sent out to different parts of the brain and other organs throughout the body. Sending signals involves fluxing calcium ion concentrations inside and outside the nerve cell, and generating a charge difference that then sparks an electrical impulse that is fired down the neuron.

A team of researchers at Hokkaido University and colleagues in Japan successfully measured voltage changes in SCN cells over several days. Previous methods were more indirect to measure the neuronal activities or yielded insufficient spatial information.

The team introduced a gene that encoded ‘voltage sensors’ into cultured SCN slices from newborn mice. The sensors are formed by fusing a fluorescent protein with another protein that can sense voltage. The intensity of the sensor’s fluorescence changes significantly with changes in voltage, which can be detected by a special microscope.

The team was surprised to find that voltage rhythms were synchronized across the entire SCN.

“This was unexpected because previous research found neuron groups in various SCN regions express circadian rhythm genes differently,” said study first author Ryosuke Enoki, an assistant professor at Hokkaido University.

While measuring voltage changes, the researchers simultaneously measured calcium ion concentrations across cell membranes and found they, similar to so-called ‘clock genes,’ were not synchronized across the entire SCN. This finding supports previous research.

The researchers suggested that the SCN could be maintaining a network-wide coherent rhythm through synchronous voltage changes.

“Inter-cellular interactions within the SCN could be in play in synchronizing voltage rhythms separate from asynchronous calcium rhythms. Further research is necessary to elucidate the mechanism and its physiological roles in maintaining the body’s circadian clock,” Enoki said.

The article can be found at: Enoki et al. (2017) Synchronous Circadian Voltage Rhythms with Asynchronous Calcium Rhythms in the Suprachiasmatic Nucleus.


Source: Hokkaido University.
Disclaimer: This article does not necessarily reflect the views of AsianScientist or its staff.

Asian Scientist Magazine is an award-winning science and technology magazine that highlights R&D news stories from Asia to a global audience. The magazine is published by Singapore-headquartered Wildtype Media Group.

Related Stories from Asian Scientist