Catching A Black Hole By Its Tail

A tell-tale tail has given away the location of a previously hidden black hole near the supernova remnant W44.

AsianScientist (Feb. 8, 2017) – Japanese researchers studying a supernova explosion have stumbled upon a method to detect hidden black holes. Their findings have been published in The Astrophysical Journal Letters.

Black holes are notoriously hard to find. Although theoretical studies have predicted that 100 million to 1 billion black holes should exist in the Milky Way, although only 60 or so have been identified through observations to date.

In some cases, black holes cause effects which can be seen. For example if a black hole has a companion star, gas streaming into the black hole piles up around it and forms a disk. The disk heats up due to the enormous gravitational pull by the black hole and emits intense radiation. But if a black hole is floating alone in space, no emissions would be observable coming from it.

Initially aiming to study the energy transfer from the explosion of the supernova remnant W44 to the surrounding molecular gas, a research team led by Masaya Yamada, a graduate student at Keio University, Japan, and Tomoharu Oka, a professor at Keio University, stumbled across signs of a hidden black hole at the edge of W44.

During the survey, the team found a compact molecular cloud with enigmatic motion. This cloud, named the “Bullet,” has a speed of more than 100 km/s, which exceeds the speed of sound in interstellar space by more than two orders of magnitude. In addition, this cloud, with the size of two light-years, moves backward against the rotation of the Milky Way Galaxy.

To investigate the origin of the Bullet, the team performed intensive observations of the gas cloud with ASTE Telescope in Chile and the 45-m Radio Telescope at Nobeyama Radio Observatory, both operated by the National Astronomical Observatory of Japan. The data indicate that the Bullet seems to jump out from the edge of the W44 supernova remnant with immense kinetic energy.

“Most of the Bullet has an expanding motion with a speed of 50 km/s, but the tip of the Bullet has a speed of 120 km/s,” said Yamada. “Its kinetic energy is a few tens of times larger than that injected by the W44 supernova. It seems impossible to generate such an energetic cloud under ordinary environments.”

The team proposed two scenarios for the formation of the Bullet. In both cases, a dark and compact gravity source, possibly a black hole, has an important role. One scenario is the “explosion model” in which an expanding gas shell of the supernova remnant passes by a static black hole. The black hole pulls the gas very close to it, giving rise to an explosion, which accelerates the gas toward us after the gas shell has passed the black hole. In this case, the astronomers estimated that the mass of the black hole would 3.5 times the solar mass or larger.

The other scenario is the “irruption model” in which a high speed black hole storms through a dense gas and the gas is dragged along by the strong gravity of the black hole to form a gas stream. In this case, researchers estimated the mass of the black hole would be 36 times the solar mass or larger. With the present dataset, it is difficult for the team to distinguish which scenario is more likely.

The team expects to disentangle the two possible scenarios and find more solid evidence for a black hole in the Bullet with higher resolution observations using a radio interferometer, such as the Atacama Large Millimeter/submillimeter Array.


The article can be found at: Yamada et al. (2016) Kinematics of Ultra-High-Velocity Gas in the Expanding Molecular Shell Adjacent to the W44 Supernova Remnant.

———

Source: National Institutes of Natural Sciences; Photo: Keio University.
Disclaimer: This article does not necessarily reflect the views of AsianScientist or its staff.

Asian Scientist Magazine is an award-winning science and technology magazine that highlights R&D news stories from Asia to a global audience. The magazine is published by Singapore-headquartered Wildtype Media Group.

Related Stories from Asian Scientist