Neurons That Respond To Intermediate Colors Identified

For the first time, researchers have demonstrated that there are neurons that respond to colors outside of the red/green and yellow/blue dichotomies.

AsianScientist (Oct. 13, 2015) – Researchers from Tohoku University’s Research Institute of Electrical Communication and the RIKEN Brain Science Institute have found the presence of neurons in the human brain which can each selectively respond to an intermediate color; not just neurons of red, green, yellow and blue. Their results have been published in the journal Cerebral Cortex.

It was previously believed that the human visual system encoded color information through combinations of four opponent colors—red/green, yellow/blue—and dark/light components. In this format, orange can be represented as the combination of red and yellow, and purple as a combination of blue and red.

However, recent electrophysiological studies in primates have revealed the presence of neurons in the visual cortex, each of which are selective to intermediate color.

Studies using human participants—through psychophysical and brain-activity-imaging techniques—have also shown indirect evidence of the presence of those neurons, although no direct recording of hue-selective response has yet been made, and the variability and population of neurons selective to intermediate colors have not been reported explicitly in humans.

The research group succeeded in recording neuronal responses selective to intermediate hues in human brains by using a functional MRI technique.

During the measurement of brain activity, subjects were shown a circular checkered pattern which gradually changed its color along a hue circle. The study was done under an equal light intensity carefully adjusted beforehand in each subject.

The time course of brain activity was analyzed for each pixel (voxel) of the fMRI data. For example, if the response of a voxel was dominated by neurons selective to a particular hue, it would exhibit a maximum response when the selective hue is presented.

The results were summarized, in terms of the voxel count selective to each hue direction, as histograms. The study’s results also confirmed that the cortical responses selective to intermediate hues are not just the combined responses of the four opponent hues.

This is the first report of the histogram of neurons selective to each hue, including intermediate hues, in human subjects.

The researchers believe the result of the study may provide clues to the design of multi-primary-color displays. Usual displays have three color primaries (usually red, green, and blue), but color-rendering precision becomes higher when six color primaries are employed. Such displays have been studied for the presentation of high-quality/precision/fidelity color images that can be used, for example, for medical or clinical purpose.

Since the histogram infers that people are possibly more sensitive to hues of larger population, it may be possible that displays with primary colors chosen among the larger population hues would be able to render more precise colors with a higher efficacy to the human brain.

The article can be found at: Kuriki et al. (2015) Hue Selectivity in Human Visual Cortex Revealed by Functional Magnetic Resonance Imaging.


Source: Tohoku University.
Disclaimer: This article does not necessarily reflect the views of AsianScientist or its staff.

Asian Scientist Magazine is an award-winning science and technology magazine that highlights R&D news stories from Asia to a global audience. The magazine is published by Singapore-headquartered Wildtype Media Group.

Related Stories from Asian Scientist