AsianScientist (Nov. 21, 2011) – Australian scientists have thrown new light on the mechanism behind the mass death of corals worldwide as the Earth’s climate warms.
Without doubt, one of the most devastating events affecting coral reefs around the planet is coral bleaching. This is triggered by rising water temperatures – when the corals and their symbiotic algae become heat-stressed, the algae which feed the corals either die or are expelled by the coral.
In the past thirty years, there have been seven major global bleaching events, the most recent sweeping across the Indian Ocean and Coral Triangle in 2010. Australia’s Great Barrier Reef has suffered eight events since 1980, the worst being in 2002 when 55 percent of the total reef area was affected. The frequency of these events appears to be increasing.
Now, working with Acropora corals from the reef at Heron Island, a team of scientists from the ARC Center of Excellence for Coral Reef Studies and James Cook University has shown that a complex cascade of molecular signals leading up to the self-inflicted death of corals and their symbiotic algae is triggered as sea water begins to warm.
Surprisingly, this cascade begins at ocean temperatures as much as 3 degrees lower than those normally associated with coral bleaching.
The process eventually culminates in ‘apoptosis’ or programmed cell-death – a situation in which living organisms (including corals and humans) deliberately destroy their weakened or infected body cells, effectively a form of ‘cell suicide’ or amputation designed to protect the organism as a whole.
“Our results suggest that the control of apoptosis is highly complex in the coral-algae symbiosis and that apoptotic cell death cascades potentially play key roles in tipping the cellular life or death balance during environmental stress prior to the onset of coral bleaching,” explained lead author Dr. Tracy Ainsworth.
The researchers discovered that this chain reaction responds significantly to subtle, daily changes in the environment and to sea temperatures which were generally thought till now to have little impact on the function of coral and its symbiotic algae. In addition, the team also managed to identify molecular signals both promoting and discouraging programmed cell-death in the corals.
This has led them to a theory that corals respond to the stresses caused by warming sea water by killing off some of the cells, while strengthening others in order to stage a possible recovery after the hot water has moved off the reef and conditions have returned to normal.
This phenomenon would explain why some corals are able to recover quite quickly from a bleaching event if it has not gone too far.
“It is far too early to speculate, but understanding the recovery process for any living organism is always a big help, as human medicine has constantly demonstrated,” Dr. Ainsworth said.
She indicated that the next step in their research will be to see how they can use this new insight into the processes of coral bleaching to understand their recovery mechanisms. They also intend to delve into how this process works at lower temperatures, or under varying temperatures.
“That in turn will lead us to explore ways that coral reef managers and users can perhaps minimise other stresses on the reef in order to give it the best possible chance of recovery from bleaching,” she added.
However, the team also cautioned that further study of the tissue function and cellular differentiation and recovery processes in coral is needed before this complicated cell death system can be fully understood.
The article can be found at: Ainsworth TD et al. (2011) Defining the tipping point. A complex cellular life/death balance in corals in response to stress.
——
Source: ARC Center for Excellence for Coral Reef Studies.
Disclaimer: This article does not necessarily reflect the views of AsianScientist or its staff.