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We developed a new fluid solver that combines the advantages of both a Lagrangian 
scheme and an Eulerian scheme. The massless Lagrangian marker particles are put into 
the Eulerian grid and advected to capture accurately the free surface. The applicability of 
the present method was demonstrated for dam breaking, wave breaking in shallow water, 
impact pressure acting on a vertical wall. The efficiency and the accuracy were also 
investigated. The numerical results showed good agreement with numerical and 
experimental results performed by other researchers. 

INTRODUCTION 
This paper describes a new numerical model for the free surface evolution 

with wave breaking including a splashing and droplets using a coupled Eulerian-
Lagrangian scheme. We developed a new fluid solver that combines advantages 
of both a Lagrangian scheme and an Eulerian scheme. A motivation for our work 
has been to describe wave deformation and air entrainment after breaking. 

In existing numerical models, Volume of Fluid (Hirt et al., 1981), level set 
method (Sussman et al., 1994), CIP method (Yabe et al., 2001) and other 
Eulerian schemes are used as direct numerical simulation method for capturing 
free surface using a fixed Cartesian grid. On the other hand, SPH method 
(Gingold et al., 1977) and MPS method (Koshizuka et al., 1997) are a 
compressible and incompressible Lagrangian scheme whose flexibility and 
robustness allow to calculate complex free surface flows. Recently, to overcome 
various difficult problems demanding sophisticated methods for evolving free 
surface, Particle Level Set method (Enright et al., 2002), CLSVOF method and 
PLIC-VOF method have been presented. These methods provide impressible 
results. However, their numerical approach could be also costly and waste a lot 
of time on computing the smoothly evolving velocity field. Therefore, these 
methods cannot allow for higher spatial resolution and/or larger domain problem 
in order to achieve good performance and scalability. 

In this paper, we propose a new fluid solver that combines advantages of both 
a Lagrangian scheme and an Eulerian scheme. Massless Lagrangian marker 
particles are put into the Eulerian grid and are advected according to velocity 
field in order to capture accurately free surface. In particle framework, the 
density function that describes free surface between different phases is corrected 
by using a suitable kernel function. The applicability of the present method is 
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demonstrated for dam breaking, wave breaking in shallow water and impact 
pressure acting on a vertical wall. The efficiency and accuracy are also 
investigated. 

NUMERICAL METHOD 

In this section, the presented numerical techniques are described. The 
presented method employs the CIP method (Yabe et al., 2001) in a fixed 
Eulerian grid. In addition, to compute violent free surface motion with splashing 
and droplets accurately and efficiently, the method is coupled with Lagrangian 
marker particles. We call this the 'Particle CIP method'. 

Governing Equations 

The numerical model uses three or two dimensional incompressible Navier-
Stokes equations. Conservation of mass and the density (color) function <f>l (gas: 
7 = 1 ; liquid: I =2 ; solid: / =3, respectively) is equation given by: 

^ = 0 
8X: 

(1) 

dui dui 1 dP u d u; 
— l - + U:—- = + - '— +Fe (2) 

dt dxj p dXj p dXjdXj 

"i + M ; ^ - = 0 
dt ' dxj 

(3) 

where ut = (u, v, w) is the velocity, /u the coefficient of viscosity in each phase, 
p the density in each phase, P the pressure, Fe the external force such as gravity 
acceleration and surface tension is modeled using the Continuum Surface Force 
(CSF) model proposed by Brackbill et al.(1992). 

The density function ^; (0 < ^, < 1) is used to define the physical properties 

of the different materials: 

1 occupied 
. (4) 

0 otherwise 

This density function can be used to track the interface between the substances 
of different density such as water, air and solids. The each phase is simulated 
with Navier-Stokes equations and variables such as viscosity, density and 
pressure may be discontinuous across the interface. 

We can derive the density and the coefficient of the viscosity by using the 
density function on the grid: 
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P = T£aPih (5) 
7=1 

3 

M = Y,Vi0i (6) 
7=1 

where fa is the density function defined by (4). 

Advection step and Non-advection step 

The governing equations are solved using the fractional step method. It is well 
known that this technique is suitable for solving a multi-phase flow without 
smearing the density across the interface. 

The advection step is calculated by the CIP method proposed by Yabe et al. 
(2001). The spatial profile of the density function between neighboring grids is 
approximated using a cubic interpolated function. The CIP method is a less 
diffusive and stable algorithm for solving the advection equation. We employ a 
Type-M scheme for the CIP method that is third-order accurate in time and space. 
In the CIP method, a spatial profile of a physical value between the cell faces of 

an Eulerian grid is interpolated by a cubic polynomial F(x) = ax3 +bx2 + cx + d 

by using / and its derivative g in two grids. Then the spatial profile at n + l 

step is obtained: 

(7) 

(8) 

/;"+1=a,.X3+fo iX
2 + g; lX+/1" (9) 

g r I = 3 a , X 2 + 2fo;X + g," (10) 

where fn+] = F(x-uAt) , gn+l = dF(x-uAt)/dx and X = -uAt . Here, 

D = -AJC , iup = i - 1 for u > 0 and D = Ax , iup = i +1 for u < 0 . In the Type 

M scheme, firstly, the CIP method is operated in one direction and then the first 
order scheme as a linear interpolation is operated in the other. The Type M 
scheme is sufficient for many applications. More details can be seen in Mutsuda 
et al.(2000). 

The non-advection step is solved using the second-order finite difference 
method and we also solve a Poisson equation for the pressure with specified 
jump conditions: 

6/ "*~ 6 iup 
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i—J-^r 
where * denotes the physical value after the advection step. Both the pressure 
and its derivatives are clearly discontinuous between the different phases. Yabe 
et al. (2001) proposed the C-CUP method and applied this technique to 
multiphase flow without smearing the density, viscosity and pressure across the 
interface. 

Arrangement of Grid and Particles 

A staggered MAC grid arrangement is used to represent the velocity, density, 
coefficient of viscosity and pressure in a Cartesian computational grid as shown 
in Fig.l. The gray dots denote massless marker particles defined in the next 
section. The velocity components are defined on the cell faces of the grid. The 
pressure is defined at the center of the cell. The density function <j>, on the 
Eulerian grid is stored at the nodes of the grid. On the other hand, the density 
function tj>p is defined at the location of each massless marker particle. The 

value of the density function <pp is kept constant during advection with the flow. 

An explicit first order in time, fractional step method using the velocity 
projection method, is used to advance the velocity and pressure fields in time. 

Lagrangian Marker Particles 

To accurately and efficiently compute a violent free surface with splashing 
and droplets, we present a method based on the CIP method coupled with 
Lagrangian marker particles. These Lagrangian marker particles are passively 
advected with the flow and used not only to track the characteristics of the 
surface but also rebuild the density function in under-resolved regions where the 
bulk of the information is lost. To reduce computational cost, these particles are 
only located near the interface where the density function <j>, is discontinuous 

within a certain bandwidth. The diameter of all particles is half size of a grid unit 
and is also constant during a calculation. Four massless marker particles are set 
per grid in two dimensions and 8 in three dimensions. 

Figure 2 shows one example of distribution of Lagrangian marker particles 
located in the inner region of a fluid. This example in our previous research is 
the numerical result of a strongly wave breaking on a reef in shallow water. The 
light blue area is the water region characterized by the density function tp, - 1. 
The black dots indicate Lagrangian marker particles set to sharply track the free 
surface. In this case, about 10,000 particles are located near the free surface. 
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Figure 1. The arrangement of Grid Figure 2. Example of particle distribution 
and Particles near the interface with the different densities 

(for a strongly wave breaking) 

Time Integration of Particle Location 

The particle locations are integrated using the evolution equation: 

d*n - -

dt * 

where xp is the particle location and u(xp) is the particle velocity. The marker 

particles and the density function are separately integrated forward in time. 
The equation for the particle locations is integrated using a forth order 

accurate Runge-Kutta method. The particle velocities ii(xp) are interpolated 

from the velocities on the neighboring cell faces of the grid as mentioned in next 
section. 

Particle Velocity u{x ) and Density Function (f)p 

Particle velocities u(xp) are interpolated from their velocities against the 

underling grid, and the density function (j) defined for the particles is 

interpolated from the density function fa defined on the nodes of the grid. In the 

presented method, we use bilinear or trilinear interpolation depending on the 

required accuracy and efficiency. Since the velocities on the cell faces are 

exchanged in unsteady flow problems, the procedure of the interpolation is 

performed at each time step. 
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Error Correction of Density Function ipl 

We propose a method for reconstructing an interface using Lagrangian marker 
particles. The error of the density function fa defined on nodes of the grid is 
corrected by using the neighboring particles within the interaction region with a 
radius h as shown in Fig.l. A smooth approximation of the density function fa 

can be constructed using a kernel function in the SPH method (Gingold et al., 
1977). This approximation is popular as particle methods. 

In the presented method, as we use the SPH method with a kernel function, the 
density function fa defined on nodes of the grid is corrected using the density 

function <f> defined at the Lagrangian marker particles within the referenced 

area with radius h: 
f N \ 

•• m a x ,Y^-^Wp\xg-xp\, 
;=i P-

,h (13) 

where fa is the density function on nodes of the grid after collecting the error, 

m I p is the volume characterized by the radius r of the particle, W is the 

kernel function defined as a spline function and x and x indicate spatial 

variables on a grid and a particle, respectively. The referenced radius h is set to 
twice the grid size. This procedure for error correction of the density function is 
carried out periodically. It is not necessary to perform this procedure at each 
time step. 

Redistribution of Particles 

To accurately capture the interface during a calculation, the redistribution 
process of the Lagrangian marker particles near the discontinuous interface is 
required. Particles are added and deleted in the grid near the interface using a 
level set function if/ ( - <x< if/ < + <x , if/ =0 at the interface) constructed by the 

density function fa . It is noted that the level set function defined in the present 

method is not advected to track the interface as the Level Set Method does that, 
rather, it is only used to build a level set contour at a certain time. 

The interface between two phases is found by the density function fa defined 

on nodes of the grid. The gradient dfa /dxt of the density function fa in space 

obtains a maximum value near the interface. Therefore, we can estimate the 
interface at a point in time using the following conditions for the x-direction: 

" min(dx, dy, dz) 
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where fcrt, a parameter that is dependent of grid size, is set to 0.1 to work well 
here and a is set to twice the grid size. Using the same approach, the interface 
for the y- and z-directions, can be easily estimated. Using these conditions, the 
level set function y/(x,y,z) is set to zero at the interface and the level set 
contour is constructed in a calculation domain. 

After constructing the level set contour, Lagrangian marker particles are 
redistributed in the inner region where the distance from the interface is within a 
bandwidth a , and the density function <fi, is greater than 0.5, for example the 
liquid phase. 

After the redistribution process, the located Lagrangian particles are attracted 
to the current smooth interface characterized by the level set function y/ = 0. 

The previous location x old of the particle before attraction is replaced using 

eq.(15) proposed by Enright et al.(2002) : 

xpMW = xpjM+X(fi/goal -y/(xp))N(xp) (15) 

where x new is the new location of the particles, X=\. y/(xp) is the level set 

function at the location, x , of each particle and is obtained by the interpolation 

as mentioned in previous section. N(x ) and y/goai are defined in Enright et 

al.(2002). To capture a more sophisticated interface, after the redistribution 
process, we put one particle per grid at the location where the following 
condition is satisfied. 

a <if/(x,y,z)<y (16) 

where y is dependent on a flow condition and set to 4 to 6 times the grid size in 
this paper. We select a =2.0 to work well in the present method. Finally, a 
particle is deleted from a computational domain when y/(xp)<0 . The 

procedure for particle redistribution is only carried out when the volume error of 
the liquid phase exceeds a limit condition not at each time step. 

RESULTS AND DISCUSSIONS 

Collapsing of Water Column 

The water column is H =1.2m wide and h =0.6m high. The calculation 
domain is 3.22m wide and 1.2m high. The water column is initially set on the left 
side with a rectangular shape. A 214 x 80 grid domain is used in two dimensions. 
The grid size is 15mm. The density and coefficient of viscosity are l,000kgm"3 

and l.Ox 103Pa.s in the water region, and 1.25kgm3 and 1.82x 10"5Pa.s in the 
air region, respectively. The total number of the particles near the free surface is 
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Figure 3. Comparison of the free surface deformation after the collapsing of the 
water column ( Left: BEM results by Greco et al., 2001, Right: Present results ) 

1,509 in two dimensions. The increment of the initial located particles is 7.5mm. 
The free-slip condition is imposed on all boundaries. The time increment is 
10" s and the calculation time is 5s. 

Figure 3 shows a comparison of the free surface deformation with BEM 
results (Greco et al., 2001). Our numerical results are in overall agreement with 
Greco's numerical results. Next, water elevations are compared at both 

XA/h = 3.721 and XB/h = 4.542 where the water is overturning and touching 

down after colliding with the right wall as shown in Fig.3. 

The pressure is also compared at both Zc/h = 0.21 and ZD/h = 0.19 . 

Figure 4 shows a comparison over time of the water elevations at the locations 
XA and XB . The model is in good agreement with the experimental and 
numerical results (Greco et al., 2001 ; Zhou et al., 1999) at t= 1.534s when the 
water is touching down. After touching down, the splashed water causes a 
complicated flow containing air bubbles; here, the model is not in such good 
agreement with the experimental results. However, the tendency of the time 
sequence is quite good at both positions. 

Figure 5 shows comparison over time of the pressure at both Zc/h = 0.27 

and ZD/h = 0.19 on the right wall. The presented model is in quite good 

agreement with the experimental and numerical results during the calculation 
time, especially from t=1.5s to 2.0s when the water is colliding with the right 
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Figure 4. Comparison of the water elevations at XA and XB near the right wall 
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Figure 5. Comparison of the time history of the pressure at Z c and ZD on the 

right wall 

wall. The time line for oscillating and decreasing has the same tendency, and the 
peak pressure coincides with the other results. 

Wave Breaking on a Reef 

Figure 6 shows a large scale wave breaking process over a reef without a 
vertical wall. It can be seen that the present method can calculate the droplets, 
the fluid pouring and the splashing after the strongly wave breaking in 
comparison with other numerical method. The grid size is 2.68mm in x-direction 
and 3.89mm in y-direction and the increment between particles is 1.34mm. The 
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grid number is 248 X 57 in 2D. The time increment is 10"4s. About 4,700 
particles are located near the free surface at the initial condition to capture the 
free surface. The incident wave height / / i s HIh =0.473, where h is the initial 
water depth. 

Figure 7 shows the time history of the volume error in the water region in this 
case. The volume error means the ratio of the water volume to the initial state. 
The error is limited to less than ±0.05% throughout the calculation and the 
average is about ± 0.02%. It is noted that the volume error in the water region is 
corrected at regular time intervals using the Lagrangian marker particles near the 
free surface. 

Figure 6. Wave breaking process on a reef (Breaker type : Plunging Breaker) 
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Figure 7. Time variation of volume error in water region. 
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Figure 8. Time history of impact pressure without entrained air. 

Figure 8 shows a comparison of the time variation of pressure for both 
Wagner and Bagnold types. Black lines denote the experimental results 
(Ararmsa et al., 1996), and blue and red lines are our results. Z/fy is the non-
dimensional vertical position from the still water level. Our numerical results are 
in good agreement with the experimental results, especially for the Wagner type 
pressure, as seen in Fig. 8 (a). As shown in Fig. 8(b), for the Bagnold type 
pressure, our numerical results are in good agreement with the experimental 
results. The frequency of oscillation ranges from 20 to 100Hz in our numerical 
results. However, in the experimental results, it is higher frequency, 160Hz. It is 
seen that both the frequency of oscillation and the amount of trapped air are 
correlated to the dynamics of the entrained air during the impact. 

Figure 9 shows a comparison of the vertical distribution of maximum pressure 
at several vertical locations, 2lhx =-0.052^1.349 on the wall located at three 
horizontal positions: Sx/hx =-0.53 (before breaking point), Sxlhx =0.47 (near 
breaking point) and 8xlhx =1.13 (after breaking point). Blue lines denote the 
present method, Red triangles denote our previous work without Lagrangian 
particles, and open circles are the experimental results with deviations. The 
maximum pressure is in overall agreement with the experimental results at all 
locations, except for pressure values at Z/fy-0.6 {5xlhi =0.47) and Z/h{~03 
(Sx/hx =1.13), although the fluctuations in the maximum pressure are observed 
in the experimental results. 

CONCLUSIONS 

To investigate applications in coastal and ocean engineering, we have 
developed an interface capturing method with the Lagrangian marker particles 
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Figure 9. Comparison of vertical distribution of maximum impact pressure on a 
vertical wall at three different locations. 

and named this the 'Particle CIP' method. The present method was applied to 
wave breaking with air entrainment in shallow water and impact pressure acting 
on a wall in Wagner type and Bagnold type. 

Comparing with previous numerical and experimental results, our numerical 
results were in good agreement. The presented method is capable of computing 
flows involving both air and water phases. It can accurately simulate wave 
breaking and splashing with air entrainment, and is very robust for violent wave 
phenomena in both two and three dimensions. The impact pressure due to 
Wagner and Bagnold types was also compared with experimental results and can 
be directly estimated using the presented method. 

The present numerical method should be a useful tool for a wide range of 
coastal and ocean engineering. In future work, the present method will be 
combined with the SPH method to compute interaction between wave and an 
elastic structure. We will investigate the fluid-structure interaction with hydro-
elastic response due to wave impact. 
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