Protein That Protects Against Bowel Inflammation Identified

More than ten years after it was first discovered, the stomach cancer associated protein SAP-1 has been linked to protecting the gut against inflammation.

AsianScientist (Oct. 5, 2015) – Although associated with stomach cancer, the protein tyrosine phosphatase SAP-1 also plays a protective role in the pathogenesis and prevention of Crohn’s disease, ulcerative colitis, and other inflammatory bowel disorders. These findings, published in the Proceedings of the National Academy of Sciences, are expected to accelerate the development of targeted therapies for inflammatory gastrointestinal diseases.

Inflammatory bowel diseases, such as Crohn’s disease and ulcerative colitis, are disorders of unknown etiology that are often characterized by abdominal pain, diarrhea, bloody stool, fever, and weight loss. These symptoms frequently interfere with activities of daily living and place patients at an elevated risk of mortality. Patients are also associated with a high risk of developing colorectal cancer.

In Japan alone, there are an estimated 200,000 patients with Crohn’s disease and ulcerative colitis, who qualify for the special government-led medical assistance system for intractable diseases. Currently, the administration of anti-inflammatory agents only provides palliative results, and the medical community is awaiting new definitive therapies. Although recent studies have demonstrated that intestinal epithelial cells play a critical role in regulating bowel inflammation, the underlying mechanism remains largely unknown.

Previously, Professor Matozaki Takashi, Associate Professor Murata Yoji and their colleagues at the Kobe University have found that SAP-1 localizes to the microvilli of the brush border in gastrointestinal epithelial cells. The transmembrane-type tyrosine phosphatase SAP-1 has an extracellular domain that protrudes into the intestinal lumen and a cytoplasmic domain that mediates tyrosine dephosphorylation of proteins.

In the present study, Matozaki and colleagues showed that SAP-1 ablation in a mouse model of inflammatory bowel disease resulted in a marked increase in the incidence and severity of bowel inflammation, suggesting that SAP-1 plays a protective role against colitis.

In addition, carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 20, an intestinal microvillus-specific membrane protein, was identified as the target of SAP-1 tyrosine dephosphorylation. Suppression of CEACAM20 functions via dephosphorylation was suggested to contribute to preventing colitis.

By shedding light on the anti-inflammatory mechanism of the intestinal epithelial cells, the researchers believe that their findings will drive the development of drugs that target SAP-1 and CEACAM20 to overcome intractable inflammatory bowel diseases.

“Since the discovery of SAP-1 at Kobe University in 1994, we have clarified its major function thanks to the efforts of many joint researchers. Our future research interests are centered on the development of new therapeutics for inflammatory bowel disease that take advantage of our understanding of SAP-1 and CEACAM20 functions,” Matozaki said.

The article can be found at: Murata et al. (2015) Protein Tyrosine Phosphatase SAP-1 Protects Against Colitis Through Regulation of CEACAM20 in the Intestinal Epithelium.

—–

Source: Kobe University.
Disclaimer: This article does not necessarily reflect the views of AsianScientist or its staff.

Asian Scientist Magazine is an award-winning science and technology magazine that highlights R&D news stories from Asia to a global audience. The magazine is published by Singapore-headquartered Wildtype Media Group.

Related Stories from Asian Scientist