A Brain-Controlled Exoskeleton Could Help The Disabled Walk Again

Researchers have built a brain-computer interface system that allows users to direct a walking aid simply by using their eyes.

AsianScientist (Aug. 21, 2015) – Scientists working at Korea University and the Technical University of Berlin have developed a brain-computer control interface for a lower limb exoskeleton by decoding specific signals from within the user’s brain. Their results are published in the Journal of Neural Engineering.

Using an electroencephalogram (EEG) cap, the system allows users to move forwards, turn left and right, sit and stand simply by staring at one of five flickering light emitting diodes (LED). Each of the five LED flickers at a different frequency, and when the users focus their attention on a specific LED this frequency is reflected within the EEG readout. This signal is identified and used to control the exoskeleton.

A key problem has been separating these precise brain signals from those associated with other brain activity, and the highly artificial signals generated by the exoskeleton.

“Exoskeletons create lots of electrical ‘noise’,” explained Professor Klaus Müller, an author on the paper. “The EEG signal gets buried under all this noise—but our system is able to separate not only the EEG signal, and also the frequency of the flickering LED within this signal.”

Although the paper reports tests on healthy individuals, the system has the potential to aid sick or disabled people.

“People with amyotrophic lateral sclerosis (ALS) [motor neuron disease], or high spinal cord injuries face difficulties communicating or using their limbs,” Müller continued. “Decoding what they intend from their brain signals could offer means to communicate and walk again.”

The control system could serve as a technically simple and feasible add-on to other devices, with EEG caps and hardware now emerging on the consumer market.

It only took volunteers a few minutes to be training how to operate the system. Because of the flickering LED they were carefully screened for epilepsy prior to taking part in the research. The researchers are now working to reduce the ‘visual fatigue’ associated with longer-term users of such systems.

“We were driven to assist disabled people, and our study shows that this brain control interface can easily and intuitively control an exoskeleton system—despite the highly challenging artifacts from the exoskeleton itself,” Müller concluded.

The article can be found at: Kwak et al. (2015) A Lower Limb Exoskeleton Control System Based on Steady State Visual Evoked Potentials.

———

Source: Institute of Physics.
Disclaimer: This article does not necessarily reflect the views of AsianScientist or its staff.

Asian Scientist Magazine is an award-winning science and technology magazine that highlights R&D news stories from Asia to a global audience. The magazine is published by Singapore-headquartered Wildtype Media Group.

Related Stories from Asian Scientist