Of Moth And Men

A study of the structure of sex pheromones in moths could shed light on the related hormone in humans.

AsianScientist (Aug. 12, 2014) – Scientists have identified the protein residues that regulate the binding of sex pheromones in moths, a finding that could be used to design pesticides and also to understand structurally similar hormones in humans. This research has been published in The Journal of Biological Chemistry.

The successful propagation of many moth species is dependent on the female’s ability to attract males of the same species via species-specific sex pheromones. In most Lepidoptera, pheromone biosynthesis is regulated by a C-terminally amidated 33-amino acid neuropeptide termed pheromone biosynthesis-activating neuropeptide (PBAN) that originates from a part of the central nervous system within the head. The sex pheromone is produced when PBAN binds to the PBAN receptor (PBANR) in the pheromone glands in the posterior section of the abdomen. The binding mode of PBAN to PBANR and the amino acid residues important for PBANR function, however, have not been as well defined.

In the current study, the group of Professor Masaru Tanokura and Associate Professor Koji Nagata at the University of Tokyo, used point mutation analysis to identify the important amino acid residues of PBANR for its translocation to the plasma membrane, its binding to PBAN, and Ca2+ mobilization induced by PBAN binding to PBANR.

Additionally, they used computer simulations to construct a three-dimensional model of the PBAN-PBANR complex that fitted with the experimentally-derived data. They also constructed a three-dimensional model of human neuromedin U (NMU) and its receptor (NMUR1), an evolutionarily-related ligand-receptor pair to PBAN-PBANR, which suggested that both PBAN and NMU dock with their receptors in a similar fashion.

The location of the amino acid residues underlying PBANR function identified in this study corresponds closely with that of G protein-coupled receptors (GPCR) for which crystallographic structures are already known, such as A2A adenosine receptor and beta2 adrenergic receptor, but a few critical residues specific to PBANR and NMUR1 were also identified.

These results will be useful not only in the development of pesticides that block the PBAN–PBANR signaling, but also provide new information concerning the interaction mechanism of NMU-NMUR1, which is involved in the regulation of human appetite, stress and pain.

The article can be found at: Kawai et al. (2014) Identification of Functionally Important Residues of the Silkmoth Pheromone Biosynthesis-activating Neuropeptide Receptor, an Insect Ortholog of the Vertebrate Neuromedin U Receptor.

———

Source: University of Tokyo.
Disclaimer: This article does not necessarily reflect the views of AsianScientist or its staff.

Asian Scientist Magazine is an award-winning science and technology magazine that highlights R&D news stories from Asia to a global audience. The magazine is published by Singapore-headquartered Wildtype Media Group.

Related Stories from Asian Scientist