Stress Is All It Takes To Make Stem Cells

Scientists have made the surprising discovery that ordinary cells can be reprogrammed to become pluripotent by subjecting them to stress.

Asian Scientist (Feb. 10, 2014) – An international team led by scientists in Japan have made the surprising discovery that ordinary cells in the body can be reprogrammed to become pluripotent simply by subjecting them to stress from acid treatment or mechanical force.

The breakthrough by Dr Haruko Obokata and colleagues at the RIKEN Center for Developmental Biology was published in a pair of reports in Nature. In their study, the scientists show that ordinary somatic cells from newborn mice can be stripped of their differentiation memory which determines what kind of cells they are. Instead, the cells revert to a state of pluripotency that in many ways resembles that seen in embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs).

However, it is not the finding that ordinary cells can be reprogrammed to resemble stem cells that is surprising but the simplicity of the conversion process: all it takes to make ordinary cells turn into these pluripotent cells, which Obokata has named STAP (stimulus-triggered acquisition of pluripotency) cells, is a shock in the form of an acidic solution (low pH) or a mechanical force.

This dose of sublethal stress triggered a remarkable transformation, causing the cells to shrink, lose the functional characteristics specific to their somatic cell type, and enter a state of stem cell-like pluripotency. These STAP cells show all the hallmarks of pluripotency, and contribute to chimeric mice and germline transmission when injected into early stage embryos.

Even more interestingly, STAP cells show a level of plasticity that exceeds that even of ESCs and iPSCs, in that they can give rise to cells of both embryonic and extraembryonic lineages; other pluripotent stem cells typically only generate embryonic lineage cells.

STAP cells also differ from stem cells in their lower ability to proliferate in culture, but Obokata found that by adding different factors to STAP culture medium, she was able to cause them to transform into either ‘STAP stem cells,’ which behaved very much like embryonic stem cells, or a second form of stem cell capable of both generating extra-embryonic lineages and long-term culture.

“It’s exciting to think about the new possibilities these findings open up, not only in areas like regenerative medicine, but perhaps in the study of cellular senescence and cancer as well,” said Obokata.

“But the greatest challenge for me going forward will be to dig deeper into the underlying mechanisms, so that we can gain a deeper understanding of how differentiated cells can covert to such an extraordinarily pluripotent state.”

The articles can be found at:
Obokata H et al. (2014) Bidirectional Developmental Potential In Reprogrammed Cells With Acquired Pluripotency.
Obokata H et al. (2014) Stimulus-Triggered Fate Conversion Of Somatic Cells Into Pluripotency.

——

Source: RIKEN.
Disclaimer: This article does not necessarily reflect the views of AsianScientist or its staff.

Asian Scientist Magazine is an award-winning science and technology magazine that highlights R&D news stories from Asia to a global audience. The magazine is published by Singapore-headquartered Wildtype Media Group.

Related Stories from Asian Scientist